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Multireference coupled cluster method for 
electronic structure of molecules 

by NEVIN OLIPHANT and LUDWIK ADAMOWICZ 
Department of Chemistry, 

University of Arizona, 
Tucson, Arizona 85721, USA 

In this review we present a systematic derivation of the multireference coupled 
cluster theory based on the single reference formalism. The coupled cluster theories 
have recently emerged as one of the major method development activities in the 
electronic structure theory of atoms and molecules. Due to its size-extensive nature, 
using the coupled cluster method the total electronic energy of the system can be 
determined with the same relative accuracy as the total electronic energies of the 
fragments which the system separates into in the process of chemical decompo- 
sition. This feature is essential for the correct theoretical determination of 
dissociation energies as well as other molecular properties. One of the most difficult 
challenges in advancing the coupled cluster theory has been the development of the 
multireference coupled cluster methodology, i.e. generating a scheme which allows 
the reference function to incorporate more than one Slater determinant. Such 
development would enable a very accurate ab initio treatment of general categories 
of open-shell systems as well as the treatment of systems with stretched multiple 
bonds leading to a more precise determination of vibrational spectra. In this article 
we review our recent results in the development of a multireference coupled cluster 
theory. The reader will be first acquainted with the second quantization formalism, 
then guided through the derivation of the single reference coupled cluster theory, 
and finally presented with the multireference formalism. We have included several 
numerical examples illustrating the performance of the single reference and 
multireference coupled cluster methods. 

1. Introduction 
In recent years, the coupled cluster (CC) theories have emerged as one of the major 

research activities in the electronic structure theory of molecules (Ciiek 1966, Ciiek 
1969, Paldus et al. 1972, Paldus and Cuek 1973, Kutzelnigg 1977, Bartlett and Purvis 
1978, Pople et al. 1978, Bartlett and Purvis 1980, Bartlett 1981, Bartlett et al. 1984, 
Hoffman and Schaefer 1986, Scuseria and Schaefer 1988). This is due primarily to its 
size-extensive nature and the efficient introduction of higher categories of configur- 
ation interaction (CI) excitations. Single reference models have been shown to be highly 
successful for non-degenerate systems. Even in difficult quasi-degenerate situations, the 
single reference CC theory, including contributions from connected triple excitations 
clusters, provide results in agreement with the basis set limit result, i.e. full CI, to within 
a few kcal mol- '. Consequently, the single reference CC theory very effectively includes 
the dynamical correlation that keeps electrons apart. However, for cases where non- 
dynamical correlation is important, i.e. when several configurations might be expected 
to make relatively equally important contributions to the exact wavefunction, the 
reference function should preferably include all these important configurations instead 
of having to depend upon the time-consuming evaluation of high-order cluster 
operators to introduce such quasi-degenerate effects. Hence, this spawned interest in 
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340 N .  Oliphant and L. Adamowicz 

the development of multireference (MR) CC theories (Mukherjee et al. 1975,1977,1979, 
Mukhopadhyay et al. 1979, Offerman 1976, Offerman et al. 1976, Monkhorst 1977, Ey 
1978, Lingren 1978, Mukhopadhyay et al. 1979, Banerjee and Simons 1981, Jeziorski 
and Monkhorst 1981, Paldus 1983, Haque et al. 1984, Laidig and Bartlett 1984, 
Nakatsuji 1985, Stolarczyk and Monkhorst 1986, 1988, Laidig et al. 1987). 

The multireference CC generalization for the open-shell molecules and bond 
breaking is under rapid development. There are several distinct approaches, differing 
not only in the methodology but also in their scope of applications. There are theories 
specifically designed to treat the correlation energy of the open-shell states, the 
category which includes bond breaking on potential energy surfaces, and there are 
other CC methods which are tailored to calculate energy differences between energy 
levels directly (Nakatsuji 1978, 1979, Paldus et al. 1978, Mukherjee and Mukherjee 
1979, Reitz and Kutzelnigg 1979, Saute et al. 1979, Ghosh et al. 1981, 1982, Pal et al. 
1984, Sekino and Bartlett 1984, Stolarczyk and Monkhorst 1986,1988, Jeziorski and 
Paldus 1988, Meissner et al. 1988, Paldus et al. 1989, Piecuch and Paldus 1992). An 
essential property, which one usually insists upon for any MRCC approach to possess, 
is a proper linked-diagram theorem, i.e. the correct size-extensive character. 

The majority of the existing MRCC methods for open-shell or quasi-degenerate 
states may be classified into two groups, depending upon whether they employ the 
valence universal wave operator and a Fock space description (Mukherjee et al. 1975, 
1977, Offerman et al. 1976, Lingren 1978, Mukherjee 1979, Mukhopadhyay et al. 1979, 
Kutzelnigg 1982, Kutzelnigg and Koch 1983, Haque and Mukherjee 1984, Stolarczyk 
and Monkhorst 1986,1988, Jeziorski and Paldus 1989), or a Hilbert spacespecific wave 
operator (Banerjee and Simons 1981, Jeziorski and Monkhorst 1981, Paldus 1983, 
Laidig and Bartlett 1984, Laidig et al. 1987). These methods are closely related to the 
multireference many-body perturbation theories (MR MBPT) (Brandow 1967, 
Sanders 1969, Lingren 1974, Hose and Kaldor 1979, 1981,1982,1984, Kaldor 1984). 
The first formulations of MRCC, as well as MBPT, assumed the completeness of the 
model space. This led to a connected expansion of the effective Hamiltonian. However, 
in an effective Hamiltonian method the necessity of a complete active space is almost 
certain to introduce intruder state problems. An attempt to drop the completeness 
assumption was made by Hose and Kaldor in their version of MR MBPT (Hose and 
Kaldor 1979, 1980, 1981, 1982, 1984). As a consequence, disconnected diagrams 
appeared in the Hamiltonian. In the incomplete model space version MRCC, 
developed later by Jeziorski and Monkhorst (1981), the disconnected terms were also 
observed in both the cluster operator and in the expansion of the,effective Hamiltonian. 

Unlike the single reference theory, there are two potential sources of size- 
inextensive terms in MRCC theory, i.e. the method used to construct the effective 
Hamiltonian and its subsequent diagonalization. The connectedness property of the 
cluster operator for the effective Hamiltonian is essential for the extensivity of the 
method. However, one must also preserve the extensive property through the 
diagonalization of the effective Hamiltonian within the model space. Some workers 
have constructed incomplete model space MRCC methods by appealing to a valence 
universal wave operator and Fock space description that permits cluster operators to 
be defined unambiguously by hierarchically solving the N - 1 and N + 1 electron 
problems, along with the N-electron problem. However, no one yet managed to 
formulate a general rigorous MRCC within a Hilbert space N-electron framework. 

It was recently discovered (Mukhopadhyay and Mukherjee 1991) that one needs a 
separable wave operator to preserve the connectivity of the effective Hamiltonian, and 
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Multireference coupled cluster method 341 

the normalization of the wave operator, i.e. its model-space projection, must not 
conflict with the separability requirement. For an incomplete model space, the 
traditional intermediate normalization was found to be size inextensive. Several size- 
extensive choices of normalization of the wave operator, which have been discussed, 
lead generally to a rather complicated formulation of the MRCC theory. 

An alternative formulation of the MRCC approach, which we have been advancing 
recently (Oliphant and Adamowicz 1991), avoids the complication of the previous 
approaches by utilizing the single reference particle-hole formalism. In this formalism 
the proper size-extensive character of the method, exhibits itself through the connected 
nature of the diagrams representing both the total energy as well as the individual 
contributions to the CC equations for the amplitudes. In this article we review our 
MRCC theory, its computational implementation and numerical results. We start with 
a brief introduction of the second quantization technique and its diagrammatic 
language, which is subsequently used to present the MRCC theory. 

2. The single reference coupled cluster theory 
2.1. Second quantization 

In order to generate the algebraic expressions corresponding to the equations in 
coupled cluster theory, it is convenient to use diagrammatic methods. The origin of 
diagrammatic techniques are attributed to Feynman and were formulated by him for 
use in quantum electrodynamics. Several modifications of his conventions for time 
independent applications have since been made (Hugenholtz 1957, Brandow 1967, 
Ciiek 1966, Paldus and Ciiek 1975, Sadlej 1989). The systematic procedure for 
unambiguously generating diagrams developed by Kucharski and Bartlett (Kucharski 
and Bartlett 1986) was used in this work. 

Second quantization is a change of representation from the common coordinate 
representation to the occupation number representation of states. The Hartree-Fock 
(HF) or self consistent field (SCF) method produces a set of orthonormal spin-orbitals 
which can be ordered and identified by a string of numbers, ni. The numbers, nB identify 
whether a spin-orbital is occupied (ni=l) or not occupied (ni=O) in a Slater 
determinant. The zero order Slater determinant; 

10) = l X l X 2 . .  . X Z N )  

10) = I1 11,. . .12NOZN+ 1 0 2 N +  2 . .  .>. 

(1) 

(2) 
With no loss of generality, the zeros following the last occupied spin-orbital can be 
omitted so that the H F  determinant for a ten electron case can be written; 

10) = 11 11111111 1). (3) 

lo;') = 11 11 11 11101 1). (4) 

can now be written as; 

An excitation from spin-orbital 9 to spin-orbital 11 produces the determinant; 

Since the quantum mechanical operators, which enter the electronic Hamiltonian, 
act on the coordinates of electrons, in order for the new notation to be of use it must be 
accompanied by a redefinition of the operators. The two fundamental operators of the 
second quantization formalism act on the spin-orbital to change its occupation, either 
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342 N .  Oliphant and L. Adamowicz 

from zero to one or from one to zero. The annihilation operator changes the occupation 
of a given spin-orbital from one to zero; 

akln,n2 ... lknk+, ...)=(- 1)gkn,ln,n2...0knk+, ...), (5 )  
where 

The origin of the phase factor (- I? results from the fact that the sign of a determinant 
depends on the sequence of spin-orbitals. This sequence must be written in a consistent 
way for all possible determinants resulting from spin-orbital substitutions. The n, 
results from the fact that if an annihilation operator acts upon a spin-orbital which has 
an occupation number of zero,'there is nothing to annihilate so the result must be zero; 

akln,n2. . .Oknk+] ...)= 0. (7) 

(8) 

The creation operator changes the occupation of a given spin-orbital from zero to one; 

a l lqn2 . .  . oknk+l. ..)=(-1)9"(1 -nk))n,n,. . . l k n k + l . .  .). 

The (1 - nk) results from the fact that if a creation operator acts upon a spin-orbital, 
which has an occupation number of one, the spin-orbital cannot be filled again so the 
result must be zero; 

alln,n2.. . lknk+l . . .) =O. (9) 
The creation operator is the complex conjugate of the annihilation operator and vice 
versa, thus when acting upon the bra vector their roles are reversed. 

The basic algebraic properties of these operators expressed as anti-commutators 
follows from the definitions, (5 )  and (8); 

[a,, a,] + = akat + atak = 0. (12) 

These three relations, (lo), (1 1) and (IZ), describe the conditions which must be met by a 
wavefunction describing a many-electron system. The wavefunction must be anti- 
symmetric with respect to the interchange of labels on any two electrons and the spin- 
orbital occupation is restricted to either 0 or 1. 

One consequence of the algebraic properties is that any state vector is an 
eigentmction of the operator; 

aka;, (13) 
with an eigenvalue equal to the one minus the occupation number of the kth spin- 
orbital; 

akaj]n, n2 . . . nknk + , . . .) = ( 1 - nJnl  n2 . . . nknk + . . .). (14) 

alak, (15) 

(16) 

Similarly any state vector is an eigenfunction of the operator; 

with an eigenvalue equal to the occupation number of the kth spin-orbital; 

alaklnln2.. .nknk+] .  . . )=nklnln2..  . nknk+, . .  .). 
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Multireference coupled cluster method 343 

The first operator, (13), will then select only those state vectors with an occupation of 
zero in the kth spin-orbital. The second operator, (15), will select only those state 
vectors with an occupation of one in the kth orbital. 

The final concept needed from second quantization in order to construct a 
graphical representation, which will be useful in coupled cluster theory, is that of a 
contraction. A contraction is simply the replacement of the second quantized 
operators, (1 3) and (1 5), with their respective eigenvalues. Two operators need not be 
adjacent to each other in a string of second quantized operators in order to be 
contracted. 

The electronic non-relativistic Hamiltonian, in coordinate representation, written 
in terms of atomic units is 

where the indices i and j are over the N electrons, the index A is over the M nuclei, 2, is 
the charge on the Ath nucleus, and rij is the radial distance between the ith electron and 
the jth electron. Combining the first two terms into one electron operator h, the 
Hamiltonian can be written in the second quantized formalism as 

where now the summations are over the complete set of spin-orbitals. In the second 
term the anti-symmetric two-electron integral is defined as; 

(ABI ICD) = (ABICD) - (ABIDC). (19) 

The Hamiltonian, (18), is now an operator which acts on electronic states defined in the 
occupation number representation. 

A general n-electron excitation operator for generating excited state vectors, 
(determinants), is written in second quantized form, (using coupled cluster theory 
conventions) as; 

The i, j, k,. . . , ni refer to occupied spin-orbitals, and a, b, c, .  . . , na refer to unoccupied 
spin-orbitals. The e:;;;;;, are the constants which precede each state vector in a 
correlated wavefunction, (called amplitudes in coupled cluster theory). 

2.2. Coupled cluster theory 
The single reference coupled cluster (CC) method has been described in many places 

(Coester 1958, Hubbard 1957,1958, Coester and Kummell960, Sinanoglu 1962, Ciiek 
1966, 1969, Nesbet 1968, 1969, Paldus, Ciiek and Shavitt 1972, Paldus 1977, Bartlett 
and Purvis 1978,1980, Pople et al. 1978, Chiles and Dykstra 1981, Banerjee and Simons 
1982, Purvis and Bartlett 1982, Kutzelnigg and Koch 1983, Kucharski and Bartlett 
1984, 1985, Lee and Bartlett 1984, Lee et al. 1984, 1985, Haque and Kaldor 1985, 
Hoffman and Schaefer 1986, Noga and Bartlett 1987, Noga et al. 1987, Lee and Rice 
1988, Scuseria and Schaefer 1988, Kucharski and Bartlett 1989, Oliphant and 
Adamowicz 1991, Piecuch and Paldus 1992). This method is based on an exponential 
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344 N.  Oliphant and L. Adamowicz 

expansion of the wave operator acting on the reference determinant, lo), to produce the 
coupled cluster wavefunction; 

IkC) = exp TIO), (21) 
where the exponential operator is expanded as; 

exp T = 1 + T +* T 2  +& T 3  +. . . , 
and the T operator is; 

In the language of second quantization the cluster operators are; 

T I  = caLai, 

T =  Ti + T2 + T3 + T4 +. . . . 

4 
T2= c t$aJaialaj, 

a > b  
i >  j 

_ _  
i >  j > k  

T4= c t$$daJaia~ajaJaka~a,, 
a > b > c > d  
i > j > k > Z  

etc. 

The second quantized operators produce the excited configuration determinants in the 
correlated wavefunction and the ts are the coefficients which determine the weight of 
the corresponding determinant in the wavefunction. The CC equations are derived, 
starting with the Schrodinger equation; 

( H -  Ecc)lk!c> =a (28) 

The CC energy is determined by projecting the Schrodinger equation against the 
reference determinant and using the fact that the Hamiltonian operator contains at 
most two electron operators; 

(O)(H-Ecc)[1 +TI +$Tf  + TJlO) =O. (29) 

Solving equation (29) for the energy yields; 

Since the first term in the energy equation represents the zero-order energy-usually 
the HF energy-it can be eliminated and this yields an equation for the correlation 
energy; 

The Schrodinger equation is then projected against the determinants representing 
all possible excited determinants for the system, beginning with single excitations, (el, 
double excitations, (O$’l, triple excitations, (O$;l, quadruple excitations, (O$$dI, etc., 
where; 

(@IH[l +TI +&Tf++T:+ T2 + T1T2+ T3]10>=Ecc(qlTl10), (32) 
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Multireference coupled cluster method 345 

(O$tlH[T,+iT: + T3 +&T: + Tl T,+ T4+&T:+iT:T2 + Tl T,+*Ti 

+&T: +&T:T, +3T:T3 +ST, Tz + TI T4 + T, T3 + &Tf 
+$TfT2 + &T: T3 + +T:T, +$TI T i  + TI T2T3 +&Tz 

+ T,T,+~T:]10) 

=Ecc(O$&dlT4+ T'T3+3T:T,+&T:+ T1T310) (35) 

This provides a set of non-linear equations for determining the CC amplitudes which 
then lead to determination of the CC energy with the use of equation (30). 

2.3. Coupled cluster diagrams and equations 
In order to generate a diagrammatic representation of the second quantized 

operators, the second quantized operators are replaced by oriented lines. The 
annihilation operator is represented as a line directed into a vertex; 

up becomes <. (36) 

The creation operator is represented as a line directed away from a vertex; 

a: becomes Y . (37) 

It is useful to employ the normal product form of the Hamiltonian rather than the 
standard form (equation 18): 

As in section 2.1 of this chapter, the one and two electron parts of the Hamiltonian 
can be separated as; 

H ,  = H - (OlHlO) = F ,  + v,, (38 a) 

where N[. . -1 denotes the normal product (Paldus and CizEk 1975), and 
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346 N .  Oliphant and L. Adamowicz 

These two parts of the Hamiltonian then give rise to different diagrams. The one and 
two electron operators represented in second quantized formalism in equation (18) of 
section 2.1 are symbolized graphically as; 

P 4  
fpqN[a l  a,] becomes v - x  (39) 

The CC excitation operators are symbolized graphically as; 

TI becomes v, 
w3 T2 becomes 

T3 becomes 

T4 becomes 

(43) 

Let us consider a term from equation (30) of the last section. One of the terms from 
the equation is; 

(01 Cfpqaiap C ea,taiIO>. (45) 
P. Q i ,  (1 

Recalling that a contraction replaces the operators involved in the contraction with its 
eigenvalue, contracting the second quantized operators amounts to connecting the 
lines of the graphical representation for these operators, (39) and (41) with the arrows 
pointing in the same direction. This yields the term; 

a 
I 

This is done to each of the terms in the CC expansion. The procedure involves making 
the contractions in all possible ways and leaving enough open lines (unconnected lines) 
to generate the level of excitation of the determinant, which the Schrodinger equation is 
projected against for that particular equation, (in other words, by convention the 
contractions with the bra vector are implied). The diagrams for coupled cluster 
excitation operators involved in product terms are not contracted with each other as 
this would produce redundant excitations. This procedure generates three diagrams for 
the equation which determines correlation energy, (3 1); 
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Multireference coupled cluster method 347 

The singles equation, (32), generates 19 diagrams; 

The last four terms on the left side of the equation involve disconnected terms that 
exactly equal the term on the right side of the equation. A similar analysis of the 
diagrams obtained by projecting the Schrodinger equation against doubly excited 
determinants, (33), reveals that not only is the energy term on the right side of the 
equation cancelled by the disconnected terms but the remainder of the disconnected 
terms in the doubles equation are equal to t$ times the connected singles equation 
which is equal to zero. This cancellation of the disconnected terms continues 
throughout the orders of the coupled cluster equations and it is this connected nature of 
the coupled cluster wavefunction which is responsible for its size-extensivity. Therefore 
only the connected terms in the equations (32H35) need be considered and they 
become; 

(@IH[l+ T ,  +$T:++TT:+ T2+ T1T2+ T3]10),=O, (49) 

(@,"lH[ 1 + T ,  +$T: ++T: +$T': + T,  +$ T ;  + T ,  T2 

(@,"gY[ T,  +$Ti + T ,  T,  +$TIT, +*T:T2 +$T, T: 

++ TIT, + T3 + Ti T3 + T4]1O)c = 0, (50) 

+ T3 + Tl T3 ++TIT3 + TZT3 + T4 + TI T4]lO),= 0, (51) 

(o$hdldlH[+ Ti + 3 T: + T3 + T1 T3 ++ TIT3 + T2 T3 + T4 + T4 + 4 T: T4 
+ T,  T4 +& T i  T3 + Tl T2 T3 + $ T f  T;  +&Ti +$ Tz]lO)c = 0. (52) 

The rules for generating the algebraic code for the CC equations are (Kucharski and 

(1) Each up oriented line is labelled with an unoccupied spin-orbital label 
a, b, c, d . .  . and each down oriented line is labelled with an occupied spin- 
orbital label i ,  j, k,  I . .  . . The open lines are labelled in sequence from left to 
right. 

Bartlett 1986): 
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348 N .  Oliphant and L. Adamowicz 

(2) Each one-particle vertex corresponds to a one-electron integral as 
(left, outlrigght, in> or; 

(3) Each two-particle vertex corresponds to the antisymmetrized integral 
(left, out; right, out1 Ileft, in; right, in} or; 

(4) Cluster vertices correspond to; 

v+, yyv = t";. (55) 

The t amplitudes are antisymmetric, t$ = - $'= - = $ and similarly for 
higher order amplitudes. 

(5 )  All spinorbital labels are summed over internal lines, or lines that terminate 
below a vertex. 

(6) The sign of the diagram is obtained from (- 1) raised to the power of the sum of 
the occupied spin-orbital labelled lines and loops. For the purpose of getting 
loops open lines are closed into loops. 

(7) The weight factor for a diagram is specified by (1/2)", where m is the number of 
pairs of equivalent lines. A pair of equivalent lines is defined as being two lines 
which begin at the same amplitude, have the same direction and end in a vertex. 

(8) To maintain full antisymmetry of an amplitude, the algebraic expression for a 
diagram should be preceded by a permutation operator permuting the open 
lines in all distinct ways, Cp( - 1)'P. 

The CC method restricted to singly and doubly excited cluster operators is called 
the CCSD method. The CC methods, which also include triply and triply and 
quadruply excited cluster operators, are called the CCSDT and CCSDTQ, methods 
respectively. Currently, the highest implemented level of the CC method is the 
CCSDTQ scheme (Oliphant and Adamowicz 1991). The complete set of diagrams and 
their corresponding algebraic expressions for the coupled cluster equations containing 
single, double, triple and quadruple excitations has been published recently (Oliphant 
and Adamowicz 1991). 

2.4. Solving the coupled cluster system of equations 
Our computational strategy for solving the CC equations (Oliphant and 

Adamowicz 1992) is similar to a previously proposed method (Purvis and Bartlett 
198 1). It involves first separating the coupled cluster equations into components which 
are linear and nonlinear with respect to the CC amplitudes; 

AX-B=O, (56) 

where A is the matrix of coefficients for the amplitudes involved in the linear terms, X is 
a vector of coupled cluster amplitudes and B contains the negative of the nonlinear 
terms. The first approximation to the coupled cluster amplitudes is generated with the 
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Multireference coupled cluster method 349 

inverse of the A matrix approximated by the inverse of its diagonal elements, D- ', and 
multiply both sides of equation (56) by D-'; 

D- 'B = X1. (57) 

AX1 = B,. (58) 

The first approximation to the nonlinear terms can now be calculated as; 

Next, the scaling factor, a, which corresponds to the minimum of the following 
expression; 

Min IalB, - B] (59) 

is calculated using the following expression; 

~l=(B,B)/(BIBl). 

a'x'  =XI, 

Next the CC amplitudes are multiplied by the scaling factor; 

and the correction vector, X, is introduced, which satisfies the following equation; 

A(Xl +X2)=B. (62) 

(63) 

X, = D-l  B,. (64) 

Now, an equation similar to equation (56) is used to find the correction vector; 

AX, = B-AX, = B- Bi = B,, 

and then; 

Then X, is orthogonalized to XI and the following two equations are solved for the 
new scaling factors for the two vectors; 

B:B:a'+B;BId=B:B, (65) 

B:B:a' + B:B:a2 =BIB, (66) 

where 

The above equations result from minimization of the expression Ia'B'+ a2B: - B{ 
A linear equation solver is used at each step to find the scaling factors and the 

procedure is iterated until the correction vector X, approaches zero. 
This procedure occasionally oscillates and diverges, a more stable, albeit slower, 

procedure is to move some of all of the nonlinear terms in B to.B, (Oliphant and 
Adamowicz 1992). 

The first computational implementation of the complete CCSDTQ method was 
presented recently (Oliphant and Adamowicz 1991). Our computer program for 
solving the CCSDTQ equations has been written in the most transparent form, using 
the spin-orbital representation of the diagrams. This has allowed direct programming 
of the algebraic expression corresponding to each diagram. Also all the quantities, 
which require storage, have been placed in the operational memory, thus eliminating 
the need for a more complicated disk storage procedure. The Convex 240 internal 
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350 N .  Oliphant and L. Adamowicz 

memory of 1 GB made this option possible. As a result of this programming strategy the 
computer code is very explicit and easy to debug, an essential feature of a programming 
effort of this complexity. 

2.5. Numerical results 
Test calculations were performed for LiH and Li, at equilibrium and at a stretched 

geometry. The results are presented in table 1. For LiH a molecular orbital basis of four 
occupied spin-orbitals and eight virtual spin-orbitals, all of sigma symmetry were used, 
see table 2. At equilibrium CCSD does a very good job, with triples contributing at the 
jthartree level and quadruples being negligible. At the extended geometry triples 
contributes much more significantly and even quadruples begin to contribute slightly. 
CCSDTQ for LiH is equivalent to full CI and the CCSDTQ energy is in complete 
agreement with the full CI energy. For Li,, a molecular orbital basis of six occupied 
spin-orbitals and eight virtual spin-orbitals all with sigma symmetry were used, see 
table 2. 

For Li, at equilibrium the contribution of triples is again at the phartree level but 
now even at equilibrium quadruples contributes slightly and while the contribution of 
triples at the stretched geometry increases significantly the contribution of quadruples 
changes sign but remained about the same magnitude. 

Examining the largest triple amplitudes for both cases, presented in Table 2, reveals 
that most of these also represent double excitations from a determinant that is doubly 
excited from the reference determinant which has become quasi-degenerate with the 
reference determinant as the bond was stretched. The quadruple excitation amplitudes 
which represent these types of excitations are capable of being represented as 
amplitudes of selected double excitations times this large double amplitude; however 
the triple excitations cannot be represented as a product of double amplitudes. For LiH 
this dominant double excitation is t:; = - 1.038780918 (for the convention used for 
spin-orbital labels see table 1) and for Li, it is tz: = -0.998345227. 

Linked quadruples can be thought of in a CI sense as correcting the products of 
amplitudes which yield a quadruple excitation level. As an example consider the 
quadruple excitation amplitude for LiH, ttz;:, this same excitation is generated by 
several products of amplitudes the most significant being tiit::. The first double 
excitation produces the quasi-degenerate determinant and the second double excit- 
ation correlates the core for this determinant. Thus for a wavefunction dominated by 
two determinants, like the one for the LiH and Li, cases with stretched bonds, the 
dominant linked quadruple contribution provides a correction corresponding to the 
change in how the core correlates for the second determinant with respect to the first 
determinant. This change can be expected to be small as long as the core electrons 

Table 1. Coupled cluster correlation energies (hartrees) for different levels of truncation. 

LiH Li, 

3-015 a.u. 9.045 a.u. 5.05 a.u. 40.4 a.u. 

CCD -0.0168873 -0.0724110 - 0.01 8001 5 - 0.1019246 
CCSD - 0.01 76496 - 0.1085920 - 0.01 8 1219 -01021333 
CCSDT -00176606 -01086567 -0.01 81545 - 0.1024 180 
CCSDTQ - 0.01 76606 -0.1086573 - 0.01 8 1562 -0.1024169 
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Multireference coupled cluster method 351 

Table 2. The largest triple and quadruple coupled cluster amplitudes. For LiH, spin-orbitals 
1234, (lou., lop, 2ou, 2 4 ) ,  are occupied and 12345678 (30% 30p,40u, 4 4 ,  50u, 5ap, 
60% 649, are unoccupied. For Li,, spin-orbitals 123456 (lou, lop, 2ou, 2op,3ou, 3op), 
are occupied and 12345678 (40% 443, 50% 500, 6 0 4  643, 7oa, 7op), are unoccupied. 

LiH 
3.015 a.u. 9.045 a.u. 

I J K  A B C  
4 3 1  5 2 1  
4 3 2  4 2 1  
4 3 2  6 4 1  
4 3 2  6 3 2  
4 3 1  7 6 5  

I J K L  A B C D  
4 3 2 1  6 3 2 1  
4 3 2 1  4 3 2 1  
4 3 2 1  6 5 2 1  
4 3 2 1  8 7 2 1  
4 3 2 1  7 6 2 1  
4 3 2 1  7 5 4 2  

T3 
- O*OO1233208 

0000505260 
0.000228419 

0000195255 
- 0.0002 13 167 

T4 
0.000036062 

-0*000027332 
- O~ooOo134O5 

0000009584 
O*ooo008178 
0.000007500 

I J K  A B C  
4 3 2  4 3 2  
4 3 1  3 2 1  
4 2 1  6 2 1  
4 3 2  6 5 2  
4 3 1  7 4 3  

I J K L  A B C D  
4 3 2 1  6 4 3 1  
4 3 2 1  4 3 2 1  
4 3 2 1  5 4 2 1  
4 3 2 1  7 6 4 3  
4 3 2 1  8 7 2 1  
4 3 2 1  8 4 3 1  

T3 
0-00635 1317 
0.001 1033 13 

- 0.000789528 
-0000483347 
-0.O00463687 

T4 
-0*000135851 

Oooo067066 
0-oooO26120 

O*ooo004352 
-0oooO10013 

- O.ooo003011 

Li, 
3.015 a.u. 0.045 a.u. 

I J K  A B C  
5 3 2  7 6 5  
5 4 2  8 6 5  
6 5 3  6 5 3  
3 2 1  6 5 3  
4 3 2  6 5 2  

I J K L  A B C D  
4 3 2 1  6 5 2 1  
4 3 2 1  7 6 2 1  
6 5 4 3  8 5 2 1  
5 4 3 2  6 3 2 1  
6 4 3 1  6 3 2 1  

T3 
0*000607571 
0-000607235 
0.000599498 
0.00059631 3 

- O~OOO557496 

T4 
0-000104560 

O.ooOo28668 

O~ooOo24330 

- O-ooOo29608 

- O.ooOo25 105 

I J K  A B C  
6 5 3  6 5 3  
4 2 1  6 5 4  
6 4 1  8 6 5  
6 3 1  7 6 5  
5 4 3  5 4 3  

I J K L  A B C D  
6 4 3 1  5 4 2 1  
5 4 3 2  5 4 2 1  
4 3 2 1  8 5 2 1  
6 5 4 3  8 5 2 1  
6 5 2 1  6 5 4 3  

T3 
-0.003033974 
-0003033885 

0.003026553 
0.00302653 8 

- 0002000682 

T4 
0000058998 

-0~oooO57601 
-0.ooOo56449 
-0.ooo054882 

O.ooo018442 

(a) The basis set for LiH consisted of the following four contracted Gaussian orbitals for the 

Li: s: 642.419 (0.00214261) 96.7985 (0.0162089) 22091 1 (0.0773156) 

lithium atom and two for the hydrogen atom (contraction coefficients in parentheses). 

6.20107 (0245786) 1-93512 (0-470189) 0-636736 (0-345471) 
S: 2.32492 (-0.0350917) 0632430 (-0191233) 00790534 (1.08399) 
S: 0.0359620 (l.Ooo00) 
pz: 0.994203 (0.155916) 0.231031 (0607684) 0.0751386 (0.391957) 

s: 0.161278 (l.OO000) 
H s: 18.7311 (0.0334946) 2.82539 (0.234727) 0.640122 (0-813757) 

(b) In the calculation on Li, we used first-order correlation orbitals generated using a 
procedure described previously (Adamowin and Bartlett 1986). The FOCO set consisted of four 
sigma orbitals and the same Gaussian basis set as that for Lin in the LiH calculation with the 
addition of a pz and a dz2 was used in the calculation; 

pz: 0.500000 (l~OOOW), dZ2: 0.500000 (1.00000) 
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352 N .  Oliphant and L. Adamowicz 

correlate in a similar fashion for both determinants. Our results suggest that the latter is 
the case for both the LiH and Li, molecules at both the equilibrium and stretched 
geometries. 

3. The multireference coupled cluster method using the single reference formalism 
3.1. Theory 

The need for a MRCC method has been the primary reason that the full inclusion of 
triple excitations (CCSDT) and quadruple excitations (CCSDTQ) has been developed 
and implemented. However due to the enormous computational effort involved, these 
methods are not practical for large scale applications. Several methods, which include 
triples in an approximate way, have also been proposed and implemented, and since 
CCSDT can reproduce points on the potential energy hypersurface for the dissociation 
of a single bond rather well, these approximate triples methods can also do this with 
some degree of success. The problem is reproducing the shape of the full configuration 
interaction (FCI) potential energy hypersurface correctly for the stretching of multiple 
bonds as well as single bonds. Essentially, in order to do this at a particular level of 
theory, the appropriate excitations from all significant determinants must be included. 
Also ideally no additional excitations from any of the determinants should be included. 

The approximate triples method implemented and presented in this chapter, is a 
generalization of the multireference coupled cluster theory (Oliphant and Adamowicz 
1991) with two determinants. The procedure has been recently modified (Oliphant and 
Adamowicz 1992) in order to accommodate more than two determinants in the 
reference space, as well as to make the computational implementation of the truncation 
scheme more tractable. In essense, the method is based on using a single reference 
formalism and explicitly includes only those triple excitations from the formal reference 
determinant, which correspond to single and double excitations from selected 
secondary reference determinants. 

This method is not intended to approximate complete CCSDT but rather to 
include triple excita'tions in such a way as to approximate a multireference coupled 
cluster wavefunction, which includes single and double excitations from all selected 
determinants in addition to single and double excitations from the formal reference 
determinant. 

Let us consider a wavefunction which is dominated by two Slater determinants and 
the second determinant being a double excitation from the first; 

11) = I*?>. (69) 
In this presentation, the convention is that upper case letters represent the double 

excitation required to produce the second determinant from the formal reference 
determinant and lower case letters represent excitations to virtual spin-orbitals (virtual 
spin-orbitals are spin-orbitals which are unoccupied in both the reference determinant 
and the second determinant). The spin-orbitals represented by the upper case letters are 
special in the sense that they are not included in the sums involved in occupied or 
virtual spin-orbitals for triple and quadruple amplitudes, but are always specifically 
indicated as fixed labels. These spin-orbitals will be referred to as active spin-orbitals. 
Since single and double amplitudes are not restricted, the sums involving single and 
double amplitudes include the active orbitals. 

The most optimal procedure to determine the reference determinants, is to perform 
a multiconfiguration self consistent field (MCSCF) calculation. The two most 
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Multireference coupled cluster method 353 

Table 3. Single and double excitations from the second reference determinant in terms of the 
formal reference determinant. 

Second Formal Type of 
determinant reference excitations 

Single 
Double 
Double 
Triple 
None 
Single 
Single 
Double 
Double 
Double 
Triple 
Triple 
Quadruple 

important determinants will be selected as reference determinants for the subsequent 
MRCCSD calculation. One of these will be the formal reference determinant and the 
other will be the second reference determinant. 

In terms of the formal reference determinant, single and double excitations from the 
second determinant are shown in table 3. Since the active spin-orbitals are not included 
in either the set of core spin-orbitals or the set of virtual spin-orbitals, they must be 
specifically indicated. This leads to four types of single excitations and nine types of 
double excitations from the second determinant. To see how to transform the 
representation from the second determinant to the formal reference determinant, first 
represent the second determinant as 10;;). Include the appropriate excitation, for 
example the first one in table 3. Since A is occupied and I is not occupied in the second 
determinant, the excitation from A to I must be included, 1Of;i). Using second- 
quantized operators this can be represented as; 

af a A  aXajaLa,lO) = af araA afafiaj 10) = U X U ~  10). (70) 
This yields the determinant I@), which is singly excited with respect to the formal 
reference determinant. Those excitations which correspond to single and double 
excitations from the formal reference determinant are automatically included in the full 
singles and doubles from the formal reference. However those excitations which 
correspond to triple and quadruple excitations from the formal reference determinant 
must be considered term by term in order to include only the desired amplitudes. 

Let us now consider the more general case of a wavefunction which has several 
dominant Slater determinants, which are singly and doubly excited with respect to the 
formal determinant; 

11) =lo;'>, 11) =lo;;), (71) 
where 10) is the formal reference determinant. In practice all doubly excited secondary 
reference determinants are selected iirst, and then the singly excited determinants, 
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354 N .  Oliphant and L. Adamowicz 

which correspond to all single excitations appearing in the selected doubly excited 
determinant, are added to the reference set. This choice of the reference determinants 
resembles the complete active space (CAS) approach. 

Double excitations from these secondary determinants expressed in terms of 
excitations from the formal reference determinant, form a restricted set of single and 
double excitations, which are of course contained in the complete set of single and 
double excitations from the formal reference determinant (CCSD), along with a 
restricted set of triple and quadruple excitations; 

It is worth mentioning that this multideterminantal approach should be invariant with 
respect to an internal unitary transformation among the virtual spin-orbitals, which 
are not occupied in any of the reference determinants, as well as with respect to an 
internal transformation among the spin-orbitals, which are occupied in all of the 
reference determinants. However the method is not in general invariant to a 
transformation which mixes the two sets of spin-orbitals, or to a transformation which 
mixes either set with the spin-orbitals which have different occupations in the reference 
determinants. 

The extension to excitations from more than one determinant does not change the 
energy expression derived in the single reference formalism due to the fact that the 
Hamiltonian operator contains at most two-electron operators and the excitations 
from secondary determinants are in terms of higher order excitations from the formal 
reference determinant. 

In the present stage of the implementation of our multireference coupled cluster 
method, all the selected quadruple excitations, which arise from double excitations of 
the double excited secondary reference determinants are neglected. These excitations 
should not be nearly as important as the triple excitations for the dissociation of a single 
bond. As discussed before, the coupled cluster quadruple amplitudes are usually very 
small due to the presence of the t; terms, which accounts for most of the correlation 
effects represented by quadruple excitations. The equations, which determine the 
coupled cluster amplitudes must now be extended to include the selected set of triples. 

Table 4. The complete set of restricted CCSDT projections. Upper case letters represent active 
labels and the lower case letters represent inactive labels. 

Projection Single Double Triple 
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Multireference coupled cluster method 355 
Table 5. The set of diagrams, which have restricted summation indices in order to introduce a 

multireference character into a single reference CCSD method. The letter in the third 
column represents the index, which is restricted to active labels, and the numbers, which 
proceed the letter, indicate in which types of projection the index has to be restricted (see 
table 4). The remaining summation indices are unrestricted. 

Single excitation diagrams 

(ql projection 

Double excitation diagrams 

(qJ projection 

589c; 679k 

245789~; 679k 

589c; 679k 

589c; 679k 

589c; 346789k 

589c; 679k 

245789~; 679k 

589c; 679k 

589c; 346789k 

589c; 679k 
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In the following equations parenthesis are used to indicate the restrictions imposed on 
the indices of the triple excitations. These equations are; 

(@IH[1+ T ,  +$Tf ++-T: + T,  + T ,  T ,  + T,G;b) I  lo), =o, (73) 
(O$lH[l+ T ,  +&Tf ++Ti +&T? + T* +3T; + TI T,  

( O g l H [  1 + T,  + 3 Tf + + T i  + h T': + T, + 3 Tq + T,  T,  + 3 T: T,  ++ T: T,  

+$ T f  T,  + T3(gb) + T ,  T3($b)] lo), = 0, (74) 

+$TI Ti + T3Gb) + T ,  ~ 3 ( $ ~ )  + 3 T: T3Gb) + T, T3($b)] lo), = 0. (75) 

The complete set of restricted CCSDT projections are presented in table 4. In table 5 we 
show how the restrictions imposed on the triple excitation amplitudes are incorporated 
into the diagrams representing equations (73) and (74). For equation (75) the procedure 
is similar and results in a more extended set of diagrams (Oliphant and Adamowicz 
1992). The multireference coupled cluster wavefunction is now given by; 

where the triple excitation operator is 

The sum over (f), indicates a sum over all selected singly excited determinants. 

3.2. Computational implementation 
The present procedure uses a blocked active space approach to our restrictions on 

the sums. The core and virtual space are both blocked into active and inactive labels. 
The active labels are those involved in one of the selected singly excited determinants. 
The labels are then arranged as inactive core, active core, active virtual and inactive 
virtual. Nine types of triple projections appear in equation (75), and their correspond- 
ing sums are; 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

(fEl <:El <%I ($3 (:::I (%I <:::I <%I ($3 
c c c c c c c c c 

I > J > K  I > J , k  I > J > K  I > J . k  I , j > k  I > J > K  I , j > k  I > J , k  I , j > k  
A > B > C  A > B > C  a , B > C  a , B > C  A > B > C  a > b , C  a ,B>C a > b , C  a > b . C  

The capital letters represent a sum over the active labels (core or virtual) whereas the 
small letters represent a sum over inactive labels. Projection number (1) represents the 
case where all labels are active, projections (2) and (3) represent the case with one 
inactive label, projections (4), (5 )  and (6) contain two inactive labels, projections (7) and 
(8) contain three inactive labels and projection (9) contains four inactive labels and one 
active pair. These include aU possible cases as a triples projection must contain at least 
one active pair in order to represent a double excitation from one of the selected 
secondary reference determinants. As it stands then, this procedure would select all 
singly and doubly excited determinants, which are contained in the active space, as 
reference determinants. In the computational implementation we reduce this to a set of 
active pairs, each pair containing an active occupied and an active unoccupied index. A 
series of 'if statements is now introduced to our CCSDT code. The 'if statements allow 
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Multireference coupled cluster method 357 

the procedure to continue if the projection contains an active pair (one of the singly 
excited determinants selected as a reference determinant). If the projection does not 
contain an active pair, the procedure moves to the next projection. 

For each type of projection a different manipulation of the summation indices in the 
coupled cluster triples equation is required. In order to be included in the coupled 
cluster equation, a triple amplitude must contain at least one active core label and one 
active virtual label. This reduces the storage requirement for triple amplitudes from 
n303 to the number of pairs in the active space times n2u2, where n and u represent the 
size of the core and virtual space respectively. Projection (1) contains the entire triples 
equation unmodified as all indices are active. As an example of how the equation is 
modified for the nine projections, let us consider a single t2t3 term which appears in the 
triples equation. 

The indices of the triple excitation amplitudes are rearranged to use two of the active 
labels as one index. As an example let us consider (9) from above. This is written as; 

(9) 
1,rn  

where (IF) represents a single index running over all the selected active pairs. The 
change in sign is due to the odd number of permutations required to achieve this 
arrangement. 

3.3. Results 
At this point, in the implementation of the theory a series of ‘if‘ statements is used in 

the complete CCSDT equations to skip a projection if it does not contain an active pair. 
The same conditional requirements are used in our array of triple amplitudes by setting 
the amplitudes with indices, which do not include an active pair, to zero. This means 
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Table 6. Correlation energies for LiH at equilibrium? and displaced geometries for different 
levels of theory. The amplitudes shown in the table correspond to the secondary 
determinants included in MRCCSD calculations. The numbers in parentheses below 
CCSD and MRCCSD correlation energies represent the difference with Full CI. All 
energies are in atomic units. 

R = R,t 

SCF -7.981091 
CCSD -0027558 

ty - 0.023792 

43) - 0-043226 
MRCCSD -0.027568 

(+ 0ooOO20) 
Full CI -0027588 

(+ O*ooOO30) 

t'z" - + 0-029 169 

R = 1.5R, 

-7.946129 
- 0.03721 5 

- 0.069650 
( + O*ooOO62) 

+ 0064722 
- 0.062463 
- 0.037245 

- 0037277 
( + O.ooOO32) 

R=2R, 

-7.897108 
-0-056351 

(+ 0~000156) 

- +0.185693 
- 0.248844 

- 0.140338 
- 0-056472 

- 0.056507 
(+ O~ooOO35) 

R = 2.5R, 

-7.857855 
-0083810 

( + 0-000229) 

$.0*377804 
-0629817 

-0.230839 
- 0084096 

- 0.084 1 10 
(+ O~ooOO14) 

R = 3Re 

- 7.828040 
-0110686 

- 0.0464 16 

-0.1 74602 
-0*111072 

-0.111082 

( + 0.000396) 

$. 0.403532 

(+O~ooOOlO) 

t Re= 3.015 a.u. 

that the current version of the computer program is not fully optimal, but should 
produce results in agreement with the theory presented in the previous section. 

Our first test case is LiH. The basis set used was of double zeta quality, Dunning's 
contraction of Huzinaga's primitive Gaussians (Li(9s5p) (Dunning 1970) and H(4s) 
basis with a hydrogen scale factor of 1.2). The results for several internuclear 
separations are reported in table 6. Four secondary reference determinants appear 
significant as the bond dissociates. At the internuclear separation of 9.045 a.u. the 
dominant double excitation amplitude was -0.95, almost equal to the unit amplitude 
of the formal reference determinant, indicating that the bond was essentially 
dissociated. The need for as many as four secondary reference determinants, and not 
one as would be expected for the dissociation of a single bond, is most likely caused by 
the use of Hart-Fock orbitals and not multiconfiguration self consistent field 
orbitals, which would be more appropriate for this purpose. The present multireference 
coupled cluster method truncated at triples (MRCCSD) did quite well at reproducing 
the full CI results. For all internuclear separations the MRCCSD energy is within a few 
hundredths of a millihartree from the full CI results. On the other hand, the single 
reference coupled cluster method including single and double excitations (CCSD) 
reproduced the full CI energy almost as well as MRCCSD did at the equilibrium 
distance, Re = 3.015 a.u., (30 phartrees difference from full CI, compared to 20 phartrees 
for MRCCSD). However the difference between the CCSD energy and the full CI 
energy grew continually larger as the internuclear separation increased. This is 
expected since the excitations from secondary determinants, which are neglected in 
CCSD become more important at larger internuclear separation. At 9-045 a.u. the 
CCSD energy is as much as 0.4 millihartrees higher than the full CI energy, compared 
to the MRCCSD energy which is only 10 phartrees higher. The MRCCSD energy is 
consistently slightly higher than the full CI results, indicating a very good reproduction 
of the shape of the full CI potential curve. 

The second test case is BH. The basis set used was of double zeta quality, Dunning's 
contraction (Dunning 1970) of Huzinaga's primitive Gaussians (B(9s5p), H(4s) basis 
with a hydrogen scale factor of 1-2). The results for three internuclear distances 
(Re =2.329 a.u., 2Re and 3Re) are presented in tabIe 7. The resuIts at the equilibrium 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
8
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



E4ultireference coupled cluster method 3 59 

Table 7. Correlation energies for BH at equilibrium? and displaced geometries for different 
levels of theory. The amplitude shown in the table corresponds to the secondary 
determinant included in MRCCSD calculations. The numbers in parenthesis below 
CCSD and MRCCSD correlation energies represent the difference with Full CI. All 
energies are in atomic units. 

R = Re? 

SCF -25.113677 
CCSD -0.073080 

t 2 S  -0.055486 
MRCCSD -0073478 

Full CI - 0073991 

(+0~000912) 

(+O~OoO513) 

R=2R, 

- 24.986389 
0.1 18799 

(+ 0.002772) 
-0407870 
- 0.1 2101 5 

( + 0000056) 
- 0.1 2 107 1 

R=3R, 

- 24.891457 
0186280 

(+ 0.004172) 
-0.862314 
- 0.1 90374 

- 0.190452 
( + O~ooOo78) 

t Re = 2.329 a.u. 
#When two additional determinants were included at equilibrium the correlation energy 

became -0.073738. The difference with FCI decreased to f0.000253. 

Table 8. Correlation energies for H,O at equilibrium? and displaced geometries for different 
levels of theory. The amplitudes shown in the table correspond to the secondary 
determinants included in MRCCSD calculations. The numbers in parenthesis below 
CCSD and MRCCSD correlation energies represent the difference with Full CI. Second 
set of numbers in parenthesis for the MRCCSD entry represents the difference with the 
CCSDT energies. All energies are in atomic units. 

R= Ref R = 2R, R=3Re 

SCF 
CCSD 

CCSDTT 

t p  
t'2' 

43' 

44' 

MRCCSD 

Full CIt 

- 76.009838 
- 0 146238 

(+O*oO1790) 

(+ 0400434) 
-0.147594 

< 0.01 
< 0.01 
< 0.01 
< 0.01 
- 0.146929 

(+Ot?OlO99) 
(+ 0~000665) 
-0- 148028 

- 75.803529 
0.205402 

( + 0.004068) 
0.209519 

-0.151375 
- 0.1 37641 
-0086370 
- 0-067994 
- 0.208934 

(+0001471) 

(+ 0.002058) 
(+ 0@00585) 
-0-210990 

- 75.595 180 
0.300732 

(+ 0.009334) 
0.3 12277 

(- 0.00221 1) 
- 0.4 16300 
-0.325476 
-0.119210 
- 0.1 15207 
- 0.3 1 1256 

(- 0001 190) 

-0310066 
(- 0.001021) 

t From (Noga and Bartlett 1987). 

distance for CCSD and MRCCSD are comparable, and the deviation from full CI for 
the CCSD energy is 0-9millihartrees while for the MRCCSD energy is 0.25millih- 
artrees. Once again, as expected, the difference between the full CI energy and the 
CCSD energy increased as the internuclear separation increased. At three times the 
equilibrium internuclear separation, the difference between the CCSD energy and the 
full CI energy has risen to 4-2 millihartrees while the MRCCSD energy has fallen to 
78 phartrees. The dominant doubly excited coupled cluster amplitude at this separ- 
ation is -0.86, indicating that the bond is essentially dissociated. In the case of BH 
MRCCSD did not do quite as well at reproducing the full CI potential curve, the 
difference with the full CI energy was quite small as the bond was stretched but a little 
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higher at equilibrium. This was probably because there were several other double 
excitation coupled cluster amplitudes corresponding to excitations from the 3 0  orbital, 
which were significant. A subsequent calculation was done at the equilibrium 
internuclear distance which included two additional reference determinants. The 
energy resulting from this calculation was much closer to the full CI energy. The 
importance of these amplitudes diminish as one of the 3 0  electrons leaves with the H 
atom during the dissociation process. The third test case is H,O. The basis set used was 
of the double zeta quality, Dunning’s contraction (Dunning 1970) of Huzinaga’s 
primitive Gaussians (O(9s5p) and H(4s) basis with a hydrogen scale factor of 1.2). 
Calculations were performed for the equilibrium structure and for the structure 
obtained by stretching both 0..  . H bonds simultaneously. This stretching simulates 
the dissociation of a double bond. The results are presented in table 8. Four double 
excitations were important in this case. For all the structures considered, the MRCCSD 
method did substantially better than CCSD and about equally as well as CCSDT. The 
agreement with CCSDT, but not as good as an agreement with full CI, indicates that 
probably some quadruple excitations would be important, as should be expected for 
stretching a double bond. 

These preliminary results are quite promising and indicate that after optimization 
of the computer code, the method could become a practical multireference coupled 
cluster procedure for larger molecular systems. 

4. Conclusions 
One of the most attended frontiers of the ab initio Quantum Chemistry has been a 

development of a size extensive multireference coupled cluster methodology. The issue 
is far from being closed and numerous groups from all parts of the globe are active in 
this area of research. The goal of this effort is of a fundamental nature, and it is to 
correctly describe the stretching and breaking of multiple chemical bonds in a size 
extensive fashion. In the present review, after summarizing some of the recent 
developments in this area, we described the MRCC methodology, which has been 
under development in our group. Our approach, which is based on the single reference 
formalism, retains the simplicity of the orbital picture and the algebra of orbital 
excitation operators. The size extensivity of our method is a direct result of the 
connected character of the diagrams representing both the total energy and all the 
components of the equations for the amplitudes. 

The numerical results presented here indicate that our approach may become a 
viable coupled cluster method for those cases, which are not adequately represented by 
a single reference coupled cluster wavefunction. 
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